
             

              (Affiliated to Osmania University & Approved by AICTE, New Delhi) 

 

 

LABORATORY MANUAL 

DIGITAL SIGNAL PROCESSING LABORATORY 

BE, VI Semester (CBCS): 2020-21 

 

NAME: ________________________________________________________________ 

 

ROLL NO:__________________________________________ 

 

BRANCH:__________________________________________ 

 

SEM:______________________________________ 

 

 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS 

ENGINEERING 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

  

 
 METHODIST 

Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 

Empower youth- Architects of Future World 



 

 

 

_____________________________________________________________________________________________

__ 

 

 

VISION 
 

To produce ethical, socially conscious and innovative professionals who 

would contribute to sustainable technological development of the society. 

 

 

MISSION 
 

To impart quality engineering education with latest technological 

developments and interdisciplinary skills to make students succeed in professional 

practice. 

 

To encourage research culture among faculty and students by establishing state 

of art laboratories and exposing them to modern industrial and organizational 

practices. 

 

To inculcate humane qualities like environmental consciousness, leadership, 

social values, professional ethics and engage in independent and lifelong learning for 

sustainable contribution to the society. 

 

 

 

 

 

 

 

 

 

METHODIST 

Estd:2008 

COLLEGE OF ENGINEERING AND 

TECHNOLOGY 



 

 

 

 

 

 

 

 

 

DEPARTMENT 
                                                 OF 

ELECTRICAL AND ELECTRONICS 

ENGINEERING 
 

 

                                            

 

LABORATORY MANUAL 

 

DIGITAL SIGNAL PROCESSING LABORATORY 

 

 

 

Prepared  

By 

Mrs. A. Archana, 

Assistant Professor 

 

 

 

 



 

 

 

 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 

VISION 

 
To become a reputed centre for imparting quality education in 

Electrical and Electronics Engineering with human values, ethics and 

social responsibility. 

 

 

MISSION 
 

 

 To impart fundamental knowledge of Electrical, Electronics and    

Computational Technology. 

 To develop professional skills through hands-on experience aligned 

to industry needs. 

 To undertake research in sunrise areas of Electrical and Electronics 

Engineering. 

 To motivate and facilitate individual and team activities to   

enhance personality skills. 

 

 

 

METHODIST 
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

 

 

 

 

 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 
PROGRAM EDUCATIONAL OBJECTIVES 

    BE-Electrical Engineering graduates shall be able to: 

 

 PEO1. Utilize domain knowledge required for analyzing and resolving practical Electrical 

Engineering problems. 

 

 PEO2.Willing to undertake inter-disciplinary projects, demonstrate the professional skills and flair 

for investigation. 

 PEO3. Imbibe the state of the art technologies in the ever transforming technical scenario. 

 

 PEO4. Exhibit social and professional ethics for sustainable development of the society. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 METHODIST 

Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

DEPARTMENT OF ELECTRICAL AND ELCTRONICS ENGINEERING 

PROGRAM OUTCOMES 
Engineering Graduates will have ability to: 

 PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, 

and an engineering specialization to the solution of electrical and electronics engineering problems. 

 PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex electrical and 

electronics engineering problems reaching substantiated conclusions using first principles of mathematics, 

natural sciences, and engineering sciences. 

 PO3. Design/development of solutions: Design solutions for complex electrical and electronics 
engineering problems and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

 PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods 
including design of experiments, analysis and interpretation of data, and synthesis of the information to 

provide valid conclusions. 

 PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modelling to complex electrical and electronics 

engineering activities with an understanding of the limitations.  

 PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, 

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional 

electrical and electronics engineering practice. 

 PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in 
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable 

development. 

 PO.8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of 

the electrical and electronics engineering practice. 

 PO9. Individual and team work: Function effectively as an individual, and as a member or leader in 

diverse teams, and in multidisciplinary settings. 

 PO10. Communication: Communicate effectively on complex engineering activities with the engineering 

community and with society at large, such as, being able to comprehend and write effective reports and 

design documentation, make effective presentations, and give and receive clear instructions.  

 PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one’s own work, as a member and leader in a team, to 

manage projects and in multidisciplinary environments.  

 PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest context of technological change. 

 

 
 

METHODIST 
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

 

 

 

 

PROGRAM SPECIFIC OUTCOMES 

 
At the end of BE program Electrical and Electronics Engineering graduates will be able to: 

 

 PSO1.Provide effective solutions in the fields of Power Electronics, Power Systems and Electrical Machines 
using MATLAB/MULTISIM. 

 PSO2.  Design and Develop various Electrical and Electronics Systems, particularly Renewable Energy 

Systems.  

 PSO3.  Demonstrate the overall knowledge and contribute for the betterment of the society.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING  

I. PREREQUISITE(S): 

Level Credits Semester Prerequisites 

UG 1 1 
DIGITAL SIGNAL 

PROCESSING 

II. SCHEME OF INSTRUCTIONS 

Lectures Tutorials Practicals Credits 

0 0 2 1 

III. SCHEME OF EVALUATION & GRADING 

S. No Component Duration Maximum Marks 

 

Continuous Internal Evaluation 

(CIE)   

1. Internal Examination – I and II  1 hour each 25 

 
CIE (Total) 

 
 25 

2. 
Semester End Examination 

(University Examination) 
3 hours 50 

  
TOTAL 75 

%Mark

s 

Range 

>=9

0 

80 to < 

90 

70 to < 

80 

60 to < 

70 

50 to < 

60 

40 to < 

50 
< 40 Absent 

Grade S A B C D E F Ab 

Grade 

Point 
10 9 8 7 6 5 0 - 

 

 

METHODIST 

Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 

COURSE OUTCOMES 

 

After completing this course the student will be able to:  

CO No. Course Outcome Taxonomy 

Level 

C652.1 Develop code to generate basic waves  

 

Apply 

C652.2 Develop code perform basic operations on them 

 

Apply 

C652.3 Develop code  to obtain linear and circular convolution 

 

Apply 

C652.4 Develop code to obtain DFT and FFT.  

 
Apply 

C652.5 Develop code to design FIR filters.  

 
Apply 

C652.6 Develop code to design IIR filters 

 
Apply 

MAPPING OF COs WITH POs & PSOs 

Correlation Level:  High – 3; Medium – 2; Low – 1  

PO / 

CO 

PO

1 

PO

2 

PO

3 

P

O4 

PO

5 

PO

6 

PO

7 

PO

8 

PO

9 

PO 

10 

PO 

11 

PO 

12 

PS

01 

PS

O2 

PS

O3 

C652.1 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

C652.2 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

C652.3 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

C652.4 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

C652.5 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

C652.6 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

C652 3 3 2 2 3 - - 2 3 2 - - 3 2 2 

 

 
 

METHODIST 
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

LABORATORY CODE OF CONDUCT 

1. Students should report to the labs concerned as per the scheduled time table. 

2. Students, who report late to the labs will not be permitted to perform the experiment scheduled for 

the day. 

3. Students to bring a 100 pages note book to enter the readings /observations while performing the 

experiment. 

4.  After completion of the experiment, certification of the staff in-charge concerned, in the 

observation book is necessary. 

5. Staff member in-charge shall evaluate for 25 marks, each experiment, based on continuous 

evaluation which will be entered in the continuous internal evaluation sheet. 

6. The record of observations, along with the detailed procedure of the experiment performed in the 

immediate previous session should be submitted for certification by the staff member in-charge. 

7. Not more than three students in a group would be permitted to perform the experiment on the 

equipment-based lab set up. However only one student is permitted per computer system for 

computer-based labs. 

8. The group-wise division made at the start of the semester should be adhered to, and no mix up 

with any other group would be allowed. 

9. The components required, pertaining to the experiment should be collected from the stores in-

charge, after duly filling in the requisition form / log register. 

10. After the completion of the experiment, students should disconnect the setup made by them, and 

return all the components / instruments taken for the purpose, in order. 

11. Any damage of the equipment or burn-out of components will be charged at cost as a penalty or 

the total group of students would be dismissed from the lab for the semester/year. 

12. Students should be present in the lab for the total time duration, as scheduled. 

13. Students are required to prepare thoroughly, before coming to Laboratory to perform the 

experiment. 

14.  Procedure sheets / data sheets provided to the students, if any, should be maintained neatly and 

returned after the completion of the experiment. 

 
 

METHODIST 
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 
DOS AND DON’TS IN THE LABORATORY 

Do’s 

 
1. Remove your shoes or wear foot socks before you enter the lab.  
2. Always keep quiet. Be considerate to other lab users.  
3. Report any problems with the computer to the person in charge.  
4. Shut down the computer properly. 

 

 

Don’ts 

1. Do not bring any food or drinks in the computer room.  
2. Do not touch any part of the computer with wet hands.  
3. Do not hit the keys on the computer too hard.  
4. Don’t damage, remove, or disconnect any labels, parts, cables or equipment.  
5. Do not install or download any software or modify or delete any system files on any lab computers.  
6. If you leave the lab, do not leave your personal belongings unattended. 

 

Before Leaving Lab: 

 Place the stools properly 

 Turn off the power to computers 

 Please check the laboratory notice board regularly for updates 

 

 

 

 

 

 

 

 

 

 

METHODIST 
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING 

 
CONTENTS 

Sl. No. Name of Experiment 

1 Generation of different discrete signal sequences and 

waveforms. 

 

2 Basic operations on Discrete Time Signals  

 

3 DFT Computation and FFT Algorithms. 

  

4 Verification of Convolution Theorem.  

 

5 Verification of Sampling Theorem.  

 

6 Design of Butterworth and Chebyshev LP and HP filters.  

 

7 Design of LPF using Rectangular, Hamming and Kaiser 

Windows.  

8 To perform linear and circular convolution for the given 

sequences. 

 

9 Design and implementation of FIR and IIR filter.  

 

10 Computation of DFT using DIT and DIF algorithm.  

 

 

Additional Experiments 

 

11 Design of LPF using Blackman Window 

 

12 Design of HPF using Hamming Window 

 

 

 

 

 

METHODIST 
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY 



 

Introduction to MATLAB 

MATLAB (matrix laboratory) is a fourth-generation high-level programming language and 

interactive environment for numerical computation, visualization and programming. 

MATLAB is developed by Math Works. 

It allows matrix manipulations; plotting of functions and data; implementation of algorithms; 

creation of user interfaces; interfacing with programs written in other languages, including C, C++, Java, 

and Fortran; analyze data; develop algorithms; and create models and applications. 

It has numerous built-in commands and math functions that help you in mathematical calculations, 

generating plots and performing numerical methods. 

MATLAB's Power of Computational Mathematics 

MATLAB is used in every facet of computational mathematics. Following are some commonly used 

mathematical calculations where it is used most commonly: 

 Dealing with Matrices and Arrays 

 2-D and 3-D Plotting and graphics 

 Linear Algebra 

 Algebraic Equations 

 Non-linear Functions 

 Statistics 

 Data Analysis 

 Calculus and Differential Equations 

 Numerical Calculations 

 Integration 

 Transforms 

 Curve Fitting 

 Various other special functions 

Features of MATLAB 

Following are the basic features of MATLAB: 

 It is a high-level language for numerical computation, visualization and application development. 

 It also provides an interactive environment for iterative exploration, design and problem solving. 

 It provides vast library of mathematical functions for linear algebra, statistics, Fourier analysis, 

filtering, optimization, numerical integration and solving ordinary differential equations. 

 It provides built-in graphics for visualizing data and tools for creating custom plots. 

 MATLAB's programming interface gives development tools for improving code quality and 

maintainability and maximizing performance. 

 It provides tools for building applications with custom graphical interfaces. 

 It provides functions for integrating MATLAB based algorithms with external applications and 

languages such as C, Java, .NET and Microsoft Excel. 

 

 

 



 

Uses of MATLAB 

MATLAB is widely used as a computational tool in science and engineering encompassing the fields 

of physics, chemistry, math and all engineering streams. It is used in a range of applications including: 

 Signal Processing and Communications 

 Image and Video Processing 

 Control Systems 

 Test and Measurement 

 Computational Finance 

 Computational Biology 

 

The MATLAB environment 

The MATLAB environment (on most computer systems) consists of menus, buttons and a writing 

area similar to an ordinary word processor. There are plenty of help functions that can be used. The writing 

area that is appeared when MATLAB is started is called the command window. In this window, the 

commands to MATLAB can be given. For example, if a program written in MATLAB has to be run, the 

program has to be typed in the command window by its name at the prompt. The command window is also 

useful in using MATLAB as a scientific calculator or as a graphing tool. If longer programs are to be 

written then, it more convenient to write the program code in a separate window, and then run it in the 

command window. 

In the command window, a prompt that looks like >> is visible. Commands can be typed 

immediately after this prompt. Once the command are typed, press <enter> for MATLAB to perform. If a 

command that MATLAB is running has to be interrupted, type <ctrl> + <c>. 

 The commands typed in the command window are stored by MATLAB 

and can be viewed in the Command History window. To repeat a command that is  already used, simply 

double-click on the command in the history window, or use the <up arrow> at the command prompt to 

iterate through the commands that is  used until the command desired to repeat is reached. 

LIBRARY FUNCTIONS  

clc: 

clc clears the command window and homes the cursor. 

clear all: 

clear: clear variables and functions from memory. clear removes all variables 

from the workspace. clear variables does the same thing.  

close all: 

close: close figure. close, by itself, closes the current figure window.  

close all: closes all the open figure windows. 



 
 
 
exp: 

exp: exponential. 

exp(x) is the exponential of the elements of x, e to the x. 

input: 

input prompt for user input. 

r = input('how many apples') gives the user the prompt in the text string and then waits  for 

input from the keyboard. the input can be any matlab expression, which is evaluated, using the 

variables in the current workspace, and the result returned in r. if the user presses the return key 

without entering anything, input returns an empty matrix. 

linspace: 

linspace linearly spaced vector. 

linspace(x1, x2) generates a row vector of 100 linearly equally spaced points between x1 and 

x2. 

rand: 

the rand function generates arrays of random numbers whose elements are uniformly 

distributed in the interval (0,1). 

ones: 

ones(n) is an n-by-n matrix of ones. 

ones(m,n) or ones([m,n]) is an m-by-n matrix of ones. 

zeros: 

zeros(n) is an n-by-n matrix of zeros. 

zeros(m,n) or zeros([m,n]) is an m-by-n matrix of zeros 

plot: 

plot linear plot. 

plot(x,y) plots vector y versus vector x. if x or y is a matrix, then the vector is plotted versus the 

rows or columns of the matrix, whichever line up. 

subplot: 

subplot create axes in tiled positions. 

h = subplot(m,n,p), or subplot(mnp), breaks the figure window into an m-by-n matrix of 

small axes, selects the p-th axes for the current plot, and returns the axis handle. the axes are 

counted along the top row of the figure window, then the second row, etc.  

 



 

 

stem: 

stem discrete sequence or "stem" plot. 

stem(y) plots the data sequence y as stems from the x axis terminated with circles for the data 

value. 

stem(x,y) plots the data sequence y at the values specified in x. 

title: 

title graph title. 

title('text') adds text at the top of the current axis. 

xlabel: 

xlabel x-axis label. 

xlabel('text') adds text beside the x-axis on the current axis. 

ylabel: 

ylabel y-axis label. 

ylabel('text') adds text beside the y-axis on the current axis. 

fprintf: 

write formatted data to file. The special formats \n,\r,\t,\b,\f can be used to produce linefeed, 

carriage return, tab, backspace, and form feed characters respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Expt. No. 1. Generation of different discrete signal sequences and waveforms 

 

AIM: Write a MATLAB program to plot basic sequences like Unit Impulse Sequence, Unit Step 

Sequence, Ramp Sequence and Exponential Sequence and to plot different waveforms like Triangular 

pulse, Rectangular pulse, Periodic sine, Saw tooth and Square wave. 

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

PROGRAM: 

%WAVE FORM GENERATION  

%CT SIGNAL  

%UNIT IMPULSE 

clc;  

clear all;  

close all;  

t1=-3:1:3;  

x1=[0,0,0,1,0,0,0];  

subplot(2,3,1);  

plot(t1,x1);  

xlabel('time');  

ylabel('Amplitude');  

title('Unit impulse signal');  

%UNIT STEP SIGNAL  

t2=-5:1:25;  

x2=[zeros(1,5),ones(1,26)];  

subplot(2,3,2);  

plot(t2,x2);  

xlabel('time');  

ylabel('Amplitude'); 

title('Unit step signal');  

%EXPONENTIAL SIGNAL  

a=input('Enter the value of a:');  

t3=-10:1:20;  

x3=exp(-1*a*t3);  

subplot(2,3,3);  

plot(t3,x3);  

xlabel('time');  

ylabel('Amplitude');  

title('Exponential signal');  

%UNIT RAMP SIGNAL  

t4=-10:1:20;  

x4=t4;  

subplot(2,3,4); 

plot(t4,x4);  

xlabel('time');  

 



 

 

 

ylabel('Amplitude');  

title('Unit ramp signal');  

%SINUSOIDAL SIGNAL  

A=input('Enter the amplitude:');  

f=input('Enter the frequency:');  

t5=-10:1:20;  

x5=A*sin(2*pi*f*t5);  

subplot(2,3,5);  

plot(t5,x5)  

xlabel('time');  

ylabel('Amplitude');  

title('Sinusoidal signal');  

%RANDOM SIGNAL  

t6=-10:1:20;  

x6=rand(1,31);  

subplot(2,3,6);  

plot(t6,x6);  

xlabel('time');  

ylabel('Amplitude');  

title('Random signal');  

%WAVE FORM GENERATION  

%DT SIGNAL  

%UNIT IMPULSE  

clc;  

clear all;  

close all;  

n1=-3:1:3;  

x1=[0,0,0,1,0,0,0]; 

subplot(2,3,1);  

stem(n1,x1);  

xlabel('time');  

ylabel('Amplitude');  

title('Unit impulse signal');  

%UNIT STEP SIGNAL  

n2=-5:1:25;  

x2=[zeros(1,5),ones(1,26)];  

subplot(2,3,2);  

stem(n2,x2);  

xlabel('time');  

ylabel('Amplitude');  

title('Unit step signal');  

%EXPONENTIAL SIGNAL  

a=input('Enter the value of a:');  

n3=-10:1:20;  

x3=power(a,n3);  

subplot(2,3,3);  

stem(n3,x3);  

xlabel('time');  

ylabel('Amplitude');  



 

 

 

 

title('Exponential signal');  

%UNIT RAMP SIGNAL  

n4=-10:1:20;  

x4=n4;  

subplot(2,3,4);  

stem(n4,x4);  

xlabel('time');  

ylabel('Amplitude'); 

title('Unit ramp signal');  

%SINUSOIDAL SIGNAL 

A=input('Enter the amplitude:');  

f=input('Enter the frequency:');  

n5=-10:1:20;  

x5=A*sin(2*pi*f*n5);  

subplot(2,3,5);  

stem(n5,x5);  

xlabel('time');  

ylabel('Amplitude');  

title('Sinusoidal signal');  

%RANDOM SIGNAL  

n6=-10:1:20;  

x6=rand(1,31);  

subplot(2,3,6);  

stem(n6,x6);  

xlabel('time');  

ylabel('Amplitude');  

title('Random signal');  

 

CONTINUOUS TIME: DISCRETE TIME: 
 

 

 

 

 

 



 

OUTPUT WAVEFORM 

(CONTINUOUS TIME):       (DISCRETE TIME): 

 

    

 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. Classify continuous signals. 

5. Classify discrete signals? 

6. Distinguish between discrete signal and digital signal. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Expt. No. 2. Basic operations on Discrete Time Signals 

AIM: Write a program in MATLAB to study the basic operations on the Discrete – time signals. 

(Operation on dependent variable (amplitude manipulation) and Operation on independent variable (time 

manipulation).  

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

 

PROGRAM  

%% 

clear all; 

close all;  

clc;  

%operations on the amplitude of signal 

 x=input('Enter input sequence:');  

a=input('Enter amplification factor:'); 

 b=input('Enter attenuation factor:'); 

 c=input('Enter amplitude reversal factor:'); 

 y1=a*x;  

y2=b*x; 

 y3=c*x; 

 n=length(x); 

 subplot(2,2,1);  

stem(0:n-1,x);  

xlabel('time');  

ylabel('amplitude');  

title('Input signal');  

subplot(2,2,2);  

 



 

stem(0:n-1,y1); 

 xlabel('time'); 

ylabel('Amplitude');  

title('Amplified signal');  

subplot(2,2,3);  

stem(0:n-1,y2); 

xlabel('time');  

ylabel('Amplitude'); 

 title('Attenuated signal'); 

 subplot(2,2,4);  

stem(0:n-1,y3);  

xlabel('time');  

ylabel('Amplitude'); 

 title('Amplitude reversal signal'); 

 %scalar addition  

d=input('Input the scalar to be added:'); 

y4=d+x; 

 figure(2);  

stem(0:n-1,y4); 

 xlabel('time');  

ylabel('Amplitude');  

title('Scalar addition signal'); 

%% 

 

 

 

 



 

 

%Time manipulations: 

clear all; 

 close all;  

clc;  

%Operations on the independent variable 

 %Time shifting of the independent variable  

x=input('Enter the input sequence:');  

n0=input('Enter the +ve shift:');  

n1=input('Enter the -ve shift:'); 

 l=length(x);  

subplot(2,2,1); 

 stem(0:l-1,x);  

xlabel('time');  

ylabel('Amplitude');  

title('Input signal'); 

i=n0:(l+n0-1); 

 j=n1:(l+n1-1);  

subplot(2,2,2);  

stem(i,x); 

 xlabel('time');  

ylabel('Amplitude'); 

 title('Positive shifted signal');  

subplot(2,2,3);  

stem(j,x);  

xlabel('time');  

 



 

ylabel('Amplitude');  

title('Negative shifted signal'); 

 %Time reversal subplot(2,2,4);  

stem(-1*(0:l-1),x); 

 xlabel('time');  

ylabel('Amplitude');  

title('Time reversal signal');  

%% 

%Arithmetic Operations:  

clear all;  

close all;  

clc;  

%Arithmetic operations on signals  

%Addition and multiplication of two signals  

x1=input('Enter the sequence of first signal:');  

x2=input('Enter the sequence of second signal:');  

l1=length(x1);  

l2=length(x2);  

subplot(2,2,1);  

stem(0:l1-1,x1); 

 xlabel('time');  

ylabel('Amplitude'); 

 title('Input sequence 1');  

subplot(2,2,2); 

 stem(0:l2-1,x2); 

 

 



 

 xlabel('time');  

ylabel('Amplitude');  

title('Input sequence 2'); 

 if l1>l2 

 l3=l1-l2;  

x2=[x2,zeros(1,l3)];  

y1=x1+x2;  

subplot(2,2,3); 

 stem(0:l1-1,y1);  

xlabel('time');  

ylabel('Amplitude');  

title('Addition of two signals');  

y2=x1.*x2; subplot(2,2,4);  

stem(0:l1-1,y2);  

xlabel('time');  

ylabel('Amplitude'); 

 title('Multiplication of two signals');  

end 

 if l2>l1  

l3=l2-l1;  

x1=[x1,zeros(1,l3)]; 

 y1=x1+x2; subplot(2,2,3); 

 stem(0:l2-1,y1); 

 xlabel('time'); 

 ylabel('Amplitude'); 

title('Addition of two signals'); 

 



 

 y2=x1.*x2;  

subplot(2,2,4);  

stem(0:l2-1,y2); 

 xlabel('time');  

ylabel('Amplitude');  

title('Multiplication of two signals'); 

 else  

y1=x1+x2;  

subplot(2,2,3);  

stem(0:l1-1,y1); 

 xlabel('time');  

ylabel('Amplitude');  

title('Addition of two signals');  

y2=x1.*x2; 

 subplot(2,2,4); 

 stem(0:l1-1,y2); 

 xlabel('time');  

ylabel('Amplitude'); 

 title('Multiplication of two signals'); 

 end 

%% 

 

 

 

 

 

 

 



 

 
Operations on the amplitude of signal : Time shifting of the independent variable : 
 

 

 

 

 

Addition and multiplication of two signals : 

 

OUTPUT WAVEFORMS: 

Operation on the amplitude of signal: 

  

 

 

 



Time shifting of the independent variable:    Addition and multiplication of two signals: 

 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. How to add two discrete signals? 
5. What is scalar multiplication? 

6. Explain about time shifting property? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Expt. No. 3. DFT and IDFT Computation & FFT Computation 

AIM: Write a MATLAB program to compute the DFT and IDFT for a discrete signal.  

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

 

PROGRAM:  

%DFT FFT 

 clc;  

close all;  

clear all;  

xn=input('Enter inputs:'); 

 N=length(xn); 

 in=menu('DFT/IDFT or FFT/IFFT','DFT','FFT'); 

 if(in==1)  

n=0:N-1;  

k=0:N-1;  

wn=exp((-1i*2*pi*k'*n)/N);  

X=wn*xn'; 

display(X);  

Wn=exp((1i*2*pi*k'*n)/N); 

 x_n=Wn*X/N; 

 display(x_n); 

 else  

X=fft(xn);  

display(X); 

 x_n=ifft(X); 

display(x_n);  

end 

OUTPUT: 

 

 



 

 

 

DFT and IDFT: 
 

FFT and IFFT: 
 

 
 

 
 

 

 

 

 

 



 

 

 

 

 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 
3. What is the difference between continuous signal and discrete signal? 

4. What is DFT?  

5. Why to perform DFT and IDFT on sequences? 
6. What is the advantage of FFT? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Expt. No. 4. Verification of Convolution Theorem 

AIM: Write a MATLAB program to determine the convolution of two sequences using linear and circular 

convolution methods.  

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

 

PROGRAM:  

%Convolution Theorem 

 clear all;  

close all; 

 clc;  

a=input('Enter first input:'); 

 b=input('Enter second input:');  

input=menu('menu','linear convolution','linear usin circular','circular convolution'); 

 if(input==1) 

 h=conv(a,b);  

display('The result of Linear Convolution is:');  

display(h);  

plot(h);  

stem(h) 

 if (input==2)  

X=fft([a zeros(1,length(b)-1)]);  

display(X);  

Y=fft([b zeros(1,length(a)-1)]); 

 display(Y); h=ifft(X.*Y); 

 display('The result of linear using circular is:');  

display(h);  



plot(h);  

stem(h);  

else 

if(length(a)==length(b)) 

 X=fft(a);  

display(X);  

Y=fft(b); 

 display(Y);  

h=ifft(X.*Y);  

display('The result of circular Convolution is:');  

display(h); 

 plot(h); 

 stem(h);  

else  

display('circular Convolution cannot be performed');  

end  

end 

OUTPUT: 

 

 

 

 

 

 



 

 

LINEAR CONVOLUTION: 
 

 

LINEAR USING CIRCULAR: 
 



 

 

 
 

CIRCULAR CONVOLUTION: 
 

 

 



 
 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What is convolution?  

5. Distinguish between linear and circular convolution? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Expt. No. 5. Verification of Sampling Theorem 

AIM: Write a MATLAB program to verify sampling theorem.  

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

 

PROGRAM: 

 %sampling theorem  

clear all; 

 close all;  

clc;  

tfinal=0.05;  

t=0:0.0005:tfinal;  

fd=input('Enter the fundemental analog signal frequency:');  

xt=sin(2*pi*fd*t); 

 choice=menu('menu','Under Sampling','Nyquist Sampling','Over Sampling');  

if(choice==1) 

 fs=1.3*fd; 

 n=0:1/fs:tfinal;  

xn=sin(2*pi*n*fd);  

plot(t,xt,'b',n,xn,'r*-');  

title('Under Sampled Plot');  

xlabel('Time');  

ylabel('Amplitude'); 

 legend('Analog','Discrete');  

elseif(choice==2)  

fs=3*fd;  



n=0:1/fs:tfinal;  

xn=sin(2*pi*n*fd); 

 plot(t,xt,'b',n,xn,'r*-'); 

 title('Nyquist Sampled Plot');  

xlabel('Time');  

ylabel('Amplitude'); 

 legend('Analog','Discrete'); 

 else  

fs=10*fd;  

n=0:1/fs:tfinal; 

 xn=sin(2*pi*n*fd); 

 plot(t,xt,'b',n,xn,'r*-');  

title('Over Sampled Plot');  

xlabel('Time'); 

 ylabel('Amplitude');  

legend('Analog','Discrete'); 

 end 

OUTPUT: 

 

 

 

 



 
     Under Sampled:     Nyquist Sampled(For sine wave):     Over Sampled: 
 

 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 
2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What is sampling?  
5. What is the need for sampling? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Expt. No. 6. Design of Butterworth and Chebyshev LP and HP filters 

 

AIM: Write a MATLAB program to verify the Butterworth and chebyshev analog LP 

and HP filters. 

APPARATUS: 

1. PC with Windows OS. 
2. MATLAB tool. 

 

PROGRAM : 

%Design of Butterworth and Chebyshev LPF and HPF  

clc; 

close all; 

clear all; 

disp('Enter IIR filter specifications'); 

rp=input('Enter pass band ripple:'); 

rs=input('Enter stop band ripple:'); 

fp=input('Enter pass band frequency:'); 

fs=input('Enter stop band frequency:'); 

F=input('Enter sampling frequency:'); 

wp=(fp)/F; 

ws=(fs)/F; 

c=menu('Enter choice','Butterworth LP','Butterworth HP','Chebyshev LP','Chebyshev HP'); 

if(c==1) 

[n,wc]=buttord(wp,ws,rp,rs); 

display(n); 

display(wc); 

[b,a]=butter(n,wc,'low'); 

display(b); 

displayelselse 

if(c==2) 

[n,wc]=buttord(wp,ws,rp,rs); 

display(n); 



display(wc); 

[b,a]=butter(n,wc,'high'); display(b); 

display(a); elseif(c==3) 

[n,wc]=cheb1ord(wp,ws,rp,rs); 

display(n); 

display(wc); 

[b,a]=cheby1(n,rp,wc,'low'); 

display(b); 

display(a); elseif(c==4) 

[n,wc]=cheb1ord(wp,ws,rp,rs); 

display(n); 

display(wc); 

[b,a]=cheby1(n,rp,wc,'high'); 

display(b); 

display(a); end 

freqz(b,a,1024,2*F); 

title('nfilter'); 

disp('Enter any key to get H(z)'); 

pause; [bz,az]=impinvar(b,a,2*F); 

disp(az); 

disp(bz); 

 

OUTPUT: 



Butterworth Low Pass Filter: 

 

 

 

 

Butterworth High Pass Filter: 



 

 

 

Chebyshev LowPass Filter: 

 

 

Chebyshev High Pass Filter: 

 

 



RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What are various filters available in DSP?  

5. What is the need for filters? 

6. Distinguish between LPF and HPF? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Expt. No. 7. Design of FIR LP filter using Rectangular, Hamming and Kaiser Windows 

AIM: Write a MATLAB program to verify the FIR LP filter using Rectangular, Hamming and Kaiser 

windows. 

APPARATUS: 

1. PC with Windows OS. 
2. MATLAB tool. 

 

PROGRAM: 

% FIR LP filter design using windows 

 clc; 

close all;  

clear all; 

N=input('Enter the order of the filter:'); 

Fc=input('Enter cut off frequency:'); 

Fs=input('Enter sampling frequency:'); 

input=menu('window selection','Rectangular','Hamming','Kaiser');  

wc=Fc/Fs; 

if(input==1) wn=rectwin(N); 

elseif(input==2) 

wn=hamming(N); 

else wn=kaiser(N); end 

b=fir1(N-1,wc,wn);  

freqz(b,1,512) 

OUTPUT: 



Rectangular Window: 

 

Hamming Window: 

 

Kaiser Window: 

 

 



 

RESULT: 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What are various filters available in DSP?  

5. What is the need for filters? 

6. Distinguish between LPF and HPF? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EXPERIMENTS ON DSP TRAINER KIT 

INTRODUCTION 

 

TMS320C6745 DSP320 Features: 

 

The DSP features the TMS320C6745 DSP320, a 375 MHz device delivering up to 3648 million 

instructions per second (MIPs) and 2736 MFLOPS. This DSP generation is designed for 

applications that require high precision accuracy. The C6745 is based on the TMS320C6000 

DSP platform designed to needs of high performing high-precision applications such as pro-

audio, medical and diagnostic. 

 
Other hardware features of the TMS320C6745 DSK board include: 

 Embedded JTAG supported via USB 

 TLV320AIC23B programmable stereo codec 

 Two 3.5mm audio jacks for microphone and speaker 

 Expansion for port connector for plug-in modules 

 Power supply : +5V, ±12V, GND 

 8 DIP switches for inputs 

 8 LED indication for output 

 Provision for manual Reset 

 4*4 LED matrix 

 Noise generator : White noise generator 

 : Amplitude 0 ~ 5Vpp 

 20*2 character LCD display. 

 2 No. 7 segment displays. 

 RTC interface : I2C based RTC section 

 Phone keypad : 0 to 9 digits and *, # characters 

 

Software -Code Composer Studio v5™ DSP320 

 A complete Integrated Development Environment (IDE), an efficient optimizing C/C++ 

compiler assembler, linker, debugger, an a advanced editor with Code Maestro™ 

technology for faster code creation, data visualization, a profiler and a flexible project 

manager DSP/BIOS™ real-time 



kernel Target error recovery software DSP320 diagnostic tool "Plug-in" ability for 

third-party software for additional functionality. 

 

 PROCEDURE TO WORK ON CODE COMPOSER STUDIO: 

 

1. Double click on Code Composer Studio v5 icon which is on desktop. 

2. It will open the workspace window as follows. 

 

To create a new project, 

 Go to Project>New CCS Project. 

Following window should appear 

 



 

o Give name to project say ”YOUR ROLL NO” with location to save 

project or use default location. 

o Check that output type must be Executable. 

o Device family is C6000. 

o The Variant is C674x Floating-point DSP and next to this you have to 

select EVMC6747. In device connection, select Texas Instruments 

XDS100v2 USB Emulator. In project templates and example section, you 

have to select an Empty project. 

o Click on ‘Finish’ button. It starts creating an empty project. 

o After finishing project creation. Empty Project will appear in left window 

of software, as shown below. 

o Create a source file. Go to File>New>source file. 

 

The new source file popup window should appear containing source folder, type in 

Linear convolution. In Source file section have same file name with say “linear 

convolution” with extension .c, Select template as a Default C++ source template 

as shown below: 



 

 

Click on ‘Finish’ button. It will create a new source file. 

 

you can write your code and save it. 

 

Check the connection with board, double click on EVMC6747.ccxml so following 

window appear. 



 

 

click on Test connection in above window, so testing window will appear as follows 

 

The window appear with the message the connection is correct, than you can close 

this window and proceed further 

Build your program from Project>Build ALL. Following console window will 

appear. It shows if any error present or not. 

 

Debug the program. For that double click on Debug icon shown in above window or 

press F11. So debug process starts as follows. double click on Debug icon shown in 

above window or press F11 So debug process starts as follows. 



 

After that loading of program is completed that is shown in following in the window 

 

Run program by clicking on RUN 

 

After completion of all program, close debug session by clicking on disconnect icon 

shown in above window. It will come to previous edit window. After completion of 

one program close project by, right click on project name and delete as shown below. 

 

 

 



 

 

 

HARDWARE SETTING 

Connect the DSP- 320 to Your PC 

1. Connect the supplied USB cable to your PC or laptop. 

2. If you plan to connect a microphone, speaker, function generator, DSO, or expansion card these must 

be plugged in properly before you connect power to the DSP320 board. 

3. JTAG cable must be connected to PC and kit before power ON the DSP320 board. The required 

driver for the emulator is automatically installed by computer. 

4. Connect the power supply to DSP320 and switch it ON. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Expt. No. 8. To perform Linear & Circular Convolution for the given sequences 

AIM: To perform linear and circular convolution for the given sequences using DSK code 

composer studio. 

APPARATUS: 

1. TMS 320C6745 DSO 320 Kit 

2. RS232 serial cable Power cord 

3. Operating system: Windows XP  

4. Software: ccs studio V3.1 

PROGRAM: 

Linear Convolution: 

#include<stdio.h> 

#define length1 6 

#define length2 4 

int x[2*length1-1]={1,2,3,4,5,6,0,0,0,0,0} 

int h[2*length1-1]={1,2,3,4,0,0,0,0,0,0,0} 

inty[length1+length2-1]; 

void main() 

{ 

int i=0;j; 

for(i=0;i<( length1+length2-1);i++) 

{y[i]=0; 

for(j=0;j<=I;j++) 

y[i]+=x[j]*h[i-j]; 

} 

printf(“\nLinear convolution values are as follows:\n”); 

for(i=0;i< (length1+length2-1);i++) printf(“%d\t”,y[i]); 

} 

 

 
 



OUTPUT: 

x[n]={1,2,3,4,5,6} 

h[n]{1,2,3,4} 

y[k]={1,4,10,20,30,40,43,38,24} 

PROGRAM: 

Circular Convolution: 

#include<stdio.h> 

Int m,n,x[30],h[30],i,j,temp[30],k,x2[30],a[30],y[30]; 

Void main () 

{ 

printf(“\nEnter the length of the first sequence:\n”); 

scanf(“%d”,&m); 

printf(“\nEnter the length of the second sequence:\n”); 

scanf(“%d”,&n); 

printf(“\nEnter the first sequence:\n”); 

for(i=0;i<m;i++) 

scanf(“%d”,&x[i]); 

printf(“\nEnter the second sequence:\n”); 

for(j=0;j<n;j++) 

scanf(“%d”,&h[j]); 

if(m-n!=0) 

{if(m>n) 

{ 

for(i=n;i<m;i++) 

h[i]=0; 

N=m; 

} 

For(i=m;i<n;i++) 

x[i]=0; 

m=n; 

} 



y[0]=0 

a[0]=h[0]; 

for(j=1;j<n;j++) 

a[j]=h[n-j]; 

for(i=0;i<n;i++) 

y[0]+=x[i]*a[i]; 

for(k=1;k<n;k++) 

{ 

y[k]=0; 

for(j=1;j<n;j++) 

x2[j]=a[j-1]; 

x2[0]=a[n-1]; 

for(i=0;i<n;i++) 

{ 

a[i]=x2[i]; 

y[k]+=x[i]*x2[i]; 

} 

} 

printf(“The circular convolution is\n”) 

for(i=0;i<n;i++) 

printf(“%d\t”,y[i]); 

} 

OUTPUT:  

x[n]={2,1,2,1}, h[n]={1,2,3,4} 

 
RESULT: 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What is convolution?  

5. Distinguish between linear and circular convolution? 

 



Expt. No. 9. Design and implementation of FIR and IIR filter 

AIM: To design FIR Low pass filter using Rectangular window, Triangular window, Kaiser 

window, FIR High pass filter using Rectangular window, Triangular window, Kaiser 

window,IIR Low pass filter using Butterworth filter & Chebyshev filters, IIR High pass filter 

using Butterworth filter & Chebyshev filters. 

APPARATUS: 

1. TMS 320C6745 DSO 320 Kit 

2. RS232 serial cable Power cord 

3. Operating system: Windows XP  

4. Software: ccs studio V3.1 

5. CRO 

PROCEDURE:  

Note down the code 

Connect CRO to the LINE OUT. 

Connect a Signal Generator to the LINE IN. 

Switch on the Signal Generator with a sine wave of frequency 100 Hz. and 

Vp-p=1.0v & vary the frequency. 

1. FOR LOW PASS FILTER: 

a. For FIR low pass rectangular window (cutoff 500Hz) 

Open Code Composer Studio, make sure the DSP kit is turned on. 

Import program using ‘Project_import Existing ccs Eclipse project. 

Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ FIR_LP_RECT_500Hz 

Then debug and run the program 

b. For FIR low pass triangular window (cutoff 1000Hz) 

Open Code Composer Studio, make sure the DSP kit is turned on. 

Import program using ‘Project_import Existing ccs Eclipse project. 

Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ FIR_LP_TRIAN_1000Hz 

Then debug and run the program 

c. For FIR low pass kaiser window (cutoff 1500Hz) 



· Open Code Composer Studio, make sure the DSP kit is turned on. 

· Import program using ‘Project_import Existing ccs Eclipse 

project. Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ FIR_LP_KAISER_1500Hz 

Then debug and run the program 

2. FOR HIGH PASS FILTER: 

a. For FIR high pass rectangular window (cufoff 400Hz) 

· Open Code Composer Studio, make sure the DSP kit is turned on. 

· Import program using ‘Project_import Existing ccs Eclipse 

project. Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ FIR_ HP_RECT_400Hz 

Then debug and run the program 

b. For FIR high pass triangular window (cutoff 800Hz) 

· Open Code Composer Studio, make sure the DSP kit is turned on. 

· Import program using ‘Project_import Existing ccs Eclipse 

project. This is saved in DVD at following location 

DSP320: TMS 320XXXX DSP Trainer V-12.0 

- 72 - Embedded & DSP 

PATH: DSP320_PROGRAMS\ FIR_ HP_TRIAN_800Hz 

Then debug and run the program 

c. For FIR high pass triangular window (cutoff 1200Hz) 

· Open Code Composer Studio, make sure the DSP kit is turned on. 

· Import program using ‘Project_import Existing ccs Eclipse 

project. Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ FIR_ HP_KAISER_1200Hz 

Then debug and run the program 

OUTPUT 

· As we applied sine input through line in, the output will appear as per the filter type on 

DSO. 

· Output will decrease after the cutoff frequency for low pass filter 

· Output will appear after cutoff frequency for high pass filter. 

· Output will appear in between specified band of frequency for band pass filter. 



PROCEDURE:  

Note down the code : 

For IIR filter design 

· Connect CRO to LINE OUT. 

· Connect a Signal Generator to the LINE IN. 

 
DSP320 : TMS 320XXXX DSP Trainer V-12.0 

- 78 - Embedded & DSP 

· Switch on the Signal Generator with a sine wave of frequency 100 Hz. and 

Vp-p=1.0V & vary frequency. 

1. FOR IIR LOW PASS FILTER 

a. For IIR low pass Butterworth filter (cutoff 800Hz) 

· Open Code Composer Studio, make sure the DSP kit is turned on. 

· Import program using ‘Project_import Existing ccs Eclipse 

project. Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ IIR_LP_BUTTER_800Hz. 

Then debug and run the program 

b. For IIR low pass chebyshev filter (cutoff 1000Hz) 

· Open Code Composer Studio, make sure the DSP kit is turned on. 

· Import program using ‘Project_import Existing ccs Eclipse 

project. Which is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ IIR_LP_CHEBY_1000Hz. 

Then debug and run the program 

2. FOR IIR HIGH PASS FILTER 

a. For IIR high pass Butterworth filter (cutoff 2500Hz) 

· Open Code Composer Studio; make sure the DSP kit is turned on. 

· Import program using ‘Project import Existing ccs Eclipse 

project. This is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ IIR_HP_BUTTER_2500Hz. 

Then debug and run the program 

b. For IIR high pass chebyshev filter (cutoff 1000Hz) 

· Open Code Composer Studio, make sure the DSP kit is turned on. 



· Import program using ‘Project_import Existing ccs Eclipse 

project. This is saved in DVD at following location 

PATH: DSP320_PROGRAMS\ IIR_HP_CHEBY_1000Hz. 

Then debug and run the program 

OUTPUT: 

· Output will decreasing after the cutoff frequency for low pass filter. 

· Output will appear at the cutoff frequency for high pass filter. 

· Output will appear in between specified band. 

 

RESULT: 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What are various filters available in DSP?  

5. What is the need for filters? 

6. Distinguish between LPF and HPF? 

 

 

 

 

 

 

 

 

 

 



Expt. No. 10. Computation Of DFT using DIT and DIF 

 

AIM: To find DFT of the given sequence using DITFFT and DIFFFT for the given sequence using DSK 

code composer studio. 

APPARATUS: 

1. TMS 320C6745 DSO 320 Kit 

2. RS232 serial cable Power cord 

3. Operating system: Windows XP  

4. Software: ccs studio V3.1 

PROGRAM: 

DIT-FFT: 

#include<stdio.h> 

//#include<conio.h> 

#include<math.h> 

#define PI 3.14 

typedef struct 

{ 

float real,imag; 

}com; 

void main() 

{ 

com xx[8],x[8],temp[8],temp1[8],y[8],a[8],b[8],w[4]; 

int i,j=0;//loop counter variables 

//printf("Enter the no of pionts of FFT=="); 

//scanf("%d", &PTS); 

printf("\nEnter values=="); 

for(i=0;i<8;i++) 

{ 

scanf("%f",&xx[i].real); 

scanf("%f",&xx[i].imag); 



} 

j=0; 

for(i=0;i<8;i=i+2) 

{ 

x[j].real=xx[i].real; 

x[j].imag=xx[i].imag; 

x[j+1].real=xx[i+4].real; 

x[j+1].imag=xx[i+4].imag; 

if(i==2) 

i=-1; 

j=j+2; 

} 

for(i=0;i<4;i++) 

{ 

w[i].real=cos(2*PI*i/8); 

w[i].imag=-sin(2*PI*i/8); 

} 

for(i=0;i<8;i=i+2) 

{ 

temp[i].real=x[i].real+x[i+1].real; 

temp[i].imag=x[i].imag+x[i+1].imag; 

temp[i+1].real=x[i].real-x[i+1].real; 

temp[i+1].imag=x[i].imag-x[i+1].imag; 

} 

for(i=2;i<8;i=3*i) 

{ 

a[i].real=temp[i].real*w[0].real-temp[i].imag*w[0].imag; 

a[i].imag=temp[i].real*w[0].imag+temp[i].imag*w[0].real; 

a[i+1].real=temp[i+1].real*w[2].real-temp[i+1].imag*w[2].imag; 

a[i+1].imag=temp[i+1].real*w[2].imag+temp[i+1].imag*w[2].real; 

temp[i].real=a[i].real; 

temp[i].imag=a[i].imag; 



temp[i+1].real=a[i+1].real; 

temp[i+1].imag=a[i+1].imag; 

} 
for(i=0;i<6;i++) 

{ 

temp1[i].real=temp[i].real+temp[i+2].real; 

temp1[i].imag=temp[i].imag+temp[i+2].imag; 

temp1[i+2].real=temp[i].real-temp[i+2].real; 

temp1[i+2].imag=temp[i].imag-temp[i+2].imag; 

if(i==1) 

i=3; 

} 

for(i=4;i<8;i++) 

{ 

b[i].real=temp1[i].real*w[i-4].real-temp1[i].imag*w[i-4].imag; 

b[i].imag=temp1[i].real*w[i-4].imag+temp1[i].imag*w[i-4].real; 

temp1[i].real=b[i].real; 

temp1[i].imag=b[i].imag; 

} 

for(i=0;i<4;i++) 

{ 

y[i].real=temp1[i].real+temp1[i+4].real; 

y[i].imag=temp1[i].imag+temp1[i+4].imag; 

y[i+4].real=temp1[i].real-temp1[i+4].real; 

y[i+4].imag=temp1[i].imag-temp1[i+4].imag; 

} 

printf("\nDFT values==\n"); 

for(i=0;i<8;i++) 

{ 

printf("\nF(%d)=(%0.1f)+j(%0.1f)\n",i,y[i].real,y[i].imag); 

} 

} 



DIF-FFT: 
 

#include<stdio.h> 

#include<math.h> 

#define PI 3.14 

typedef struct 

{ 

float real,imag; 

}com; 

void main() 

{ 

com x[8],y[8],w[4],temp,temp1[8],temp2[8],temp3[8]; 

int i,j=0; 

printf("\nEnter the values of x(n)\n"); 

for(i=0;i<8;i++) 

scanf("%f%f",&x[i].real,&x[i].imag); 

for(i=0;i<4;i++) 

{ 

w[i].real=cos(2*PI*i/8); 

w[i].imag=-sin(2*PI*i/8); 

} 

for(i=0;i<4;i++) 

{ 

temp1[i].real=x[i].real+x[i+4].real; 

temp1[i].imag=x[i].imag+x[i+4].imag; 

temp.real=x[i].real-x[i+4].real; 

temp.imag=x[i].imag-x[i+4].imag; 

temp1[i+4].real=w[i].real*temp.real-w[i].imag*temp.imag; 

temp1[i+4].imag=w[i].real*temp.imag+w[i].imag*temp.real; 

} 

for(i=0;i<6;i++) 

{ 



temp2[i].real=temp1[i].real+temp1[i+2].real; 

temp2[i].imag=temp1[i].imag+temp1[i+2].imag; 

 

temp.real=temp1[i].real-temp1[i+2].real; 

temp.imag=temp1[i].imag-temp1[i+2].imag; 

temp2[i+2].real=w[j].real*temp.real-w[j].imag*temp.imag; 

temp2[i+2].imag=w[j].real*temp.imag+w[j].imag*temp.real; 

if(j==2) 

j=-2; 

j=j+2; 

if(i==1) 

i=3; } 

for(i=0;i<8;i=i+2) 

{ temp3[i].real=temp2[i].real+temp2[i+1].real; 

temp3[i].imag=temp2[i].imag+temp2[i+1].imag; 

temp3[i+1].real=temp2[i].real-temp2[i+1].real; 

temp3[i+1].imag=temp2[i].imag-temp2[i+1].imag; 

} 

printf("\n\nDFT Values are===\n"); 

j=0; 

for(i=0;i<8;i=i+2) 

{ y[j].real=temp3[i].real; 

y[j].imag=temp3[i].imag; 

y[j+1].real=temp3[i+4].real; 

y[j+1].imag=temp3[i+4].imag; 

if(i==2) 

i=-1; 

j=j+2; } 

for(i=0;i<8;i++) 

{ 

printf("\nF(%d)=(%0.1f)+j(%0.1f)\n",i,y[i].real,y[i].imag); 



} 

} 

 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What is DFT?  

5. Why to perform DFT and IDFT on sequences? 

6. What is the advantage of FFT? 



Expt. No. 11. Design of LPF using Blackman Window 

AIM: Write a MATLAB program to verify the FIR LP filter using Blackman window. 

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

 

PROGRAM: 

% FIR LP filter design using Blackman windows 

 

clc; 

close all;  

clear all; 

rp = input('Enter the Pass Band Ripple: '); 

rs = input('Enter the Stop Band Ripple: '); 

fp = input('Enter the Pass Band Frequency: ‘); 

fs = input('Enter the Stop Band Frequency: ‘); 

f = input('Enter the Sampling Frequency: '); 

wp = 2 * fp /f; 
ws = 2 * fa/f; 

num = - 20 * log10( sqrt(rp*rs))- 13; 

den = 14.6 * (fs-fp)/f; 

n = ceil (nurrr/ den); 

n1 = n+l; 

if (rem(n,2)~=0); 

n1 = n; 

n = n-1; 

end 

y = blackman (n1); 

% LOW PASS FILTER 

b = firl(n,wp,y); 

[h,o] = freqz(b,1,256); 

m = 20 * log10(abs(h)); 

subplot(2,2,1) ; 

plot (o/pi,m) ; 

title(' ***** BLACKMAN WINDOW *****'); 

ylabel('Gain indb------>'); 

xlabel('(a) Normalised Frequency------->'); 

 

 

 



OUTPUT: 

 
Enter the Pass Band Ripple: 0.05 

Enter the Stop Band Ripple: 0.04 

Enter the Pass Band Frequency: 1500 

Enter the Stop Band Frequency: 2000 

Enter the Sampling Frequency: 8000 

 

 
 

 

 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What are various filters available in DSP?  

5. What is the need for filters? 

6. Distinguish between LPF and HPF? 

 



 

 

Expt. No. 12. Design of HPF using Hamming Window 

AIM: Write a MATLAB program to verify the FIR HP filter using Hamming window. 

APPARATUS: 

1. PC with Windows OS. 

2. MATLAB tool. 

 

PROGRAM: 

% FIR HP filter design using Hamming window  

clc;  

close all;  

clear all; 

rp = input('Enter the Pass Band Ripple: '); 

rs = input('Enter the Stop Band Ripple: '); 

fp = input('Enter the Pass Band Frequency: '); 

fs = input('Enter the Stop Band Frequency: '); 

f = input('Enter the Sampling Frequency: '); 

wp = 2 * fpjf; 

ws = 2 * fsjf; 

num = - 20 * log10( sqrt(rp*rs))- 13; 

den = 14.6 * (fs-fp)jf; 

n = ceil (numjden); 

n1 = n+1; 

if (rem(n,2)-=0) ; 

n1 = n; 

n = n-1; 

end 

y = hamming (n1); 

% HIGH PASS FILTER 

b = firl(n,wp,'high',y); 

[h,o] = freqz(b,1,256); 

m = 20*log10(abs(h)); 

subplot(2,2,2) .plotto Zpi.m] ; 

ylabel('Gain in db------>'); 

xlabel(' (b) Normalised Frequency------>']; 

OUTPUT: 

 

Enter the Pass Band Ripple: 0.05 

Enter the Stop Band Ripple: 0.04 
Enter the Pass Band Frequency: 1500 

Enter the Stop Band Frequency: 2000 

Enter the Sampling Frequency: 8000 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 
 

RESULT: 

 

VIVA QUESTIONS: 

1. What does MATLAB stand for? 

2. What is the importance of MATLAB tool? 

3. What is the difference between continuous signal and discrete signal? 

4. What are various filters available in DSP?  

5. What is the need for filters? 

6. Distinguish between LPF and HPF? 

 

 

 

 

 

 


	DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
	DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (1)
	DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING (2)
	LIBRARY FUNCTIONS
	clear all:
	exp:
	input:
	linspace:
	rand:
	ones:
	zeros:
	plot:
	subplot:
	title:
	xlabel:
	ylabel:
	fprintf:
	AIM: Write a MATLAB program to plot basic sequences like Unit Impulse Sequence, Unit Step Sequence, Ramp Sequence and Exponential Sequence and to plot different waveforms like Triangular pulse, Rectangular pulse, Periodic sine, Saw tooth and Square wave.
	APPARATUS:
	1. PC with Windows OS.
	2. MATLAB tool.
	PROGRAM:
	CONTINUOUS TIME: DISCRETE TIME:
	APPARATUS: (1)
	1. PC with Windows OS. (1)
	2. MATLAB tool. (1)
	Operations on the amplitude of signal : Time shifting of the independent variable :
	APPARATUS: (2)
	1. PC with Windows OS. (2)
	2. MATLAB tool. (2)
	RESULT:
	APPARATUS: (3)
	1. PC with Windows OS. (3)
	2. MATLAB tool. (3)
	RESULT: (1)
	APPARATUS: (4)
	1. PC with Windows OS. (4)
	2. MATLAB tool. (4)
	RESULT: (2)
	APPARATUS: (5)
	1. PC with Windows OS. (5)
	2. MATLAB tool. (5)
	PROGRAM :
	APPARATUS: (6)
	1. PC with Windows OS. (6)
	2. MATLAB tool. (6)
	OUTPUT:
	RESULT: (3)
	1. FOR LOW PASS FILTER:
	PATH: DSP320_PROGRAMS\ FIR_LP_RECT_500Hz
	b. For FIR low pass triangular window (cutoff 1000Hz)
	PATH: DSP320_PROGRAMS\ FIR_LP_TRIAN_1000Hz
	c. For FIR low pass kaiser window (cutoff 1500Hz)
	PATH: DSP320_PROGRAMS\ FIR_LP_KAISER_1500Hz
	2. FOR HIGH PASS FILTER:
	PATH: DSP320_PROGRAMS\ FIR_ HP_RECT_400Hz
	b. For FIR high pass triangular window (cutoff 800Hz)
	PATH: DSP320_PROGRAMS\ FIR_ HP_TRIAN_800Hz
	c. For FIR high pass triangular window (cutoff 1200Hz)
	PATH: DSP320_PROGRAMS\ FIR_ HP_KAISER_1200Hz
	OUTPUT
	PROCEDURE:
	Note down the code :
	For IIR filter design
	1. FOR IIR LOW PASS FILTER
	PATH: DSP320_PROGRAMS\ IIR_LP_BUTTER_800Hz.
	b. For IIR low pass chebyshev filter (cutoff 1000Hz)
	PATH: DSP320_PROGRAMS\ IIR_LP_CHEBY_1000Hz.
	2. FOR IIR HIGH PASS FILTER
	PATH: DSP320_PROGRAMS\ IIR_HP_BUTTER_2500Hz.
	b. For IIR high pass chebyshev filter (cutoff 1000Hz)
	PATH: DSP320_PROGRAMS\ IIR_HP_CHEBY_1000Hz.
	OUTPUT: (1)
	DIF-FFT:
	APPARATUS: (7)
	1. PC with Windows OS. (7)
	2. MATLAB tool. (7)
	APPARATUS: (8)
	1. PC with Windows OS. (8)
	2. MATLAB tool. (8)

